行业资讯
一种电路用氮化硅陶瓷基片及其制备方法与流程
来源:行业资讯  添加时间:2024-03-31 23:39:21

  导航:X技术最新专利无机化学及其化合物制造及其合成,应用技术

  1.本发明涉及陶瓷基片领域,分类号大类为b32b,特别是涉及一种采用自蔓延法合成氮化硅粉体并以其为主原料制成电路用陶瓷基片。

  2.陶瓷基板在电路中起承载元件、互联、外贴、保护和冷却等作用。随着电子信息、电力电子,尤其是高密度微电子封装、大功率模块等技术不断地向高集成化、高速度化、微型化、智能化的方向发展,与这一趋势相适应的主要基础元件之一的陶瓷基板的性能提出了更多、更高的要求。目前,大范围的应用的a12o3陶瓷基板已经越来越不适应上述技术发展的需要,其根本原因是a12o3的热导率较低,约为20-30w/m

  k高热导率的aln陶瓷已经在大功率模块电路、可控硅整流器、大功率晶体管、半导体激光器、大功率集成电路、固体继电器、开关电源及其它要求既绝缘又高散热的大功率器件上,以及作为g高频多功能手提电话微电路芯片承载基板、第四代led光源电路承载基板等领域应用日益广泛。然而,aln陶瓷基板的抗弯强度仅为350-400mpa,断裂韧性≤2.7mpa

  左右,以及抗热震性能都不足够高,与a12o3陶瓷基板相近,其强韧、抗热震性已经不适应下一代半导体器件,光伏电池和集成电路等新技术领域的需要。尤其是不适用于使用环境更为严酷的,需要高强、高热导、高抗热震性的工作条件。如在电动汽车、高铁等领域,半导体器件使用的过程中往往要面临颠簸、震动等复杂的力学环境;而氮化硅si3n4陶瓷具备优秀能力的力学、物理综合性能,尤其是兼具高强韧、高热导率的性能特性,抗弯强度≥600mpa、裂韧性6.0~8.0 mpa

  k,其陶瓷基板在电子信息、电力电子等高技术领域获得了愈来愈普遍的应用,已经慢慢的变多地应用于igbt大功率模块、5g通讯无线模块、led封装、汽车电子和航天军工等领域,成为最有前途的衬底材料之一。

  3.目前,制备氮化硅陶瓷基板大都采用硅粉直接氮化法或热分解法制备的氮化硅陶瓷粉体,这两种粉体的价格高居不下,非常不利于氮化硅陶瓷基板的市场开拓及扩展应用领域。

  4.制备氮化硅陶瓷时,一般会用α-si3n4含量≥92%的粉体作为原料,并且必须添加适量的助烧结剂,以实现致密化烧结。烧结助剂的不同会对烧结过程中的液相粘度、润湿性等性质产生不同的影响,从而改变液相烧结的传质机制,直接影响氮化硅烧结的溶解淀析进程,导致相转程度、晶格完整程度,晶粒形状及其尺寸、晶界相含量及其分布等显微结构的差异,从而影响材料的力学、热学性能。因此,合理选择烧结助剂的组成是制备高强韧、高热导率氮化硅陶瓷最为关键的技术之一。现有的技术大多是是采用添加少量(通常≤10wt%)的,如y2o3、mgo等氧化物,在n2气氛保护下、在高于1800℃的高温下通过液相烧结实现氮化硅陶瓷的致密化。有必要注意一下的是,由于si和o有着非常强的亲和力,且一旦o进入si3n4晶格就会导致氧缺陷产生而降低si3n4陶瓷的热导率。因此,采用这一类氧化物作为烧结助剂不是最佳的选择。

  5.此外,就氮化硅陶瓷烧结技术与工艺而言,主要的方法有常压烧结、反应烧结、热压烧结、热等静压烧结等。常压烧结与反应烧结所制备的氮化硅陶瓷热导率通常低于30 w/m

  k。更主要的问题是,采用这些烧结技术,其素坯的成型工艺以及烧结设备都不可能大规模、大批量地一次性获得尺寸精度要求极其严格、精细的二维片式陶瓷基板;很大一部分烧结后的最终产物为块体材料,还需要切割成片等。这些都极其不适应于快速地发展的电子信息、电力电子等领域对高性能氮化硅陶瓷基板的质量和性能的要求和数量的市场需求。

  6.目前,作为高强、高韧、抗热震性的结构件,si3n4陶瓷产品已经获得广泛的应用。但是,一般来说,这一类产品对热导率的要求不高。如何采用具有大规模连续生产特点的流延成型技术与工艺制造si3n4陶瓷基板(或称基片),以适应电子信息、电力电子、半导体激光技术等元器件的片式化、多层独石化、小型化等的发展的新趋势的要求,以及提高元器件产品的生产效率和产品的一致性,基片产品向着平整、光洁及薄(如≤0.2mm)、大面积(如≥6

  6in)的方向发展。以流延成型技术与工艺制造al2o3和aln陶瓷基板已经很成熟,但是,由于si3n4与al2o3和aln的粉体特性存在一定的差异等,如何将流延成型技术与工艺应用于si3n4陶瓷基板的制造,尚有许多亟待解决的问题。

  7.因此,针对上述的问题,本发明提供一种电路用氮化硅陶瓷基片及其制备方法,解决采用现存技术的制备方法没有办法获得尺寸精度高、韧性高、热导率高的氮化硅陶瓷基板的问题。

  8.为实现上述目的,本发明采用了以下技术方案:一种电路用氮化硅陶瓷基片的制备方法,包括以下制备步骤:(1)流延浆料配制:将α-si3n4粉体、re2o

  3-mxoy-mgsin2三元复合助烧结剂与有机复合助剂按一定的配比称量,利用球磨机进行26-32小时的均匀混合,得到初级流延浆料;然后,对所述初级流延浆料进行真空除泡、熟化处理,制得流延浆料;(2)流延成型:将流延浆料通过流延机制备成流延素坯带;(3)冲切成形:将流延素坯带冲切成形为具有一定形状和尺寸的素坯片;(4)叠片:将上述素坯片精准叠放、堆垛,每一堆垛的叠放片数示坯片的厚度而定,每两素坯片之间均匀撒敷隔粘粉以防止烧结过程中坯片蘸粘;(5)排胶:将堆垛的素坯片置于排胶炉中,在≤620℃的温度下,大气气氛中进行排胶处理,以排除素坯片中的各种有机物,从而获得不含残余碳的氮化硅陶瓷坯片;(6)高温气压烧结:将上述氮化硅陶瓷坯片置于气压炉中,在1750℃-1850℃、3-10mpa的环境中进行高温烧结4-10小时,得到电路用氮化硅陶瓷基片;其中,所述α-si3n4粉体与助烧结剂的用量比以重量百分比计=90-96:4-10;所述α-si3n4粉体采用自蔓延法制备而成。

  3-mxoy-mgsin2三元复合助烧结剂中的re2o3为稀土氧化物。

  3-mxoy-mgsin2三元复合助烧结剂中的re为gd、lu、y、yb、eu中的任意一种。

  3-mxoy-mgsin2三元复合助烧结剂中的mxoy为mgo、zro2中的任意一种。

  13.进一步的改进是:所述有机复合助剂包括溶剂、分散剂、粘结剂、增塑剂、表面活性剂。

  14.进一步的改进是:所述溶剂为丁酮与无水乙醇按重量比为15-18:17-20的混合溶剂。

  16.进一步的改进是:所述粘结剂为聚乙烯醇缩丁醛,所述增塑剂为邻苯二甲酸二丁酯或邻苯二甲酸丁卞酯,所述表面活性剂为聚乙二醇。

  17.一种电路用氮化硅陶瓷基片,采用以下重量百分比的各原料制成流延浆料再经后续加工制作而成:α-si3n4粉体90-96wt%、re2o

  3-mxoy-mgsin2三元复合助烧结剂4-10wt%以及占粉体和助烧结剂总重50-70wt%的有机复合助剂。

  18.通过采用前述技术方案,本发明的有益效果为:1、本发明采用自蔓延法(shs) 即燃烧法制备的粉体作为原料制备高性能氮化硅基板,与一般会用价格高的硅粉直接氮化法、热分解法(td)制备的粉体相比较价格低,有利于降低生产成本。

  3-mxoy-mgsin2三元复合助烧结剂,在高温形成的液相更加有利于促进致密化烧结,所生成si

  n液相有助于α-si3n4的溶解-淀析生成β-si3n4;此外,助烧过程后期,随着β-si3n4晶粒长大的过程,部分液相被排挤出陶瓷体内,这一助烧过程表现为过渡液相烧结机理,可减少晶界相含量。多重作用有利于提高氮化硅陶瓷的热导率。

  20.3、本发明添加的mgsin2烧结助剂由于不含氧,可更加有效地净化氮化硅晶格,提高氮化硅陶瓷的热导率。

  21.4、本发明采用的流延成型技术与工艺,可大规模制备尺寸精度高、高强韧、高热导率氮化硅陶瓷基板。

  22.5、本发明与以往采用甲苯、二甲苯等有毒溶剂不同,采用丁酮-无水乙醇混合溶剂制备流延浆料,无公害;此外,通过调节丁酮-无水乙醇组成比,可调节混合溶剂共沸点,易于控制不同厚度的流延坯带的干燥速率,避免坯片的开裂。

  23.6、本发明采用蓖麻油作为分散剂,其价格比鱼油等其他分散剂低廉得多,资源比较丰富,其性价比好。

  24.7、本发明采用气压炉烧结氮化硅基板,气压烧结的最高温度为1780-1820℃,保温时间为4-10小时压力为3-10mpa,既有利于量产,又有利于获得致密的高强韧、高热导率的氮化硅基片。

  25.图1是本发明实施例一产品的xrd分析图;图2为本发明实施例二产品的xrd分析图;图3为本发明实施例三产品的sem图;

  图4为本发明实施例四产品的xrd分析图;图5为本发明实施例五产品的sem图。

  26.下面结合具体实施例对本发明作进一步说明,但本发明并不限于以下实施例。以下实施例所采用的不同合成方法制备的氮化硅原料均为α-si3n4含量≥92%粉体。

  27.实施例一一种电路用氮化硅陶瓷基片,所用原料为:陶瓷原料包括燃烧法(自蔓延法)制备的α-si3n4粉体、y2o3粉体、mgo粉体和mgsin2粉体,物料混合及成型有机助剂包括溶剂丁酮和无水乙醇、粘结剂pvb、分散剂蓖麻油、增塑剂邻苯二甲酸二丁脂(dbp)或邻苯二甲酸丁卞脂,表面活性剂聚乙二醇(peg)。

  28.si3n4陶瓷组成配方:si3n4、y2o3、mgo和mgsin2的重量百分比分别为92.0%、4.0%、2.0%、2.0%。上述电路用氮化硅陶瓷基片的具体制备过程为:流延浆料配制:按上述si3n4陶瓷的组成配方,将si3n4、y2o3、mgo和mgsin2粉体与15.0wt%粉体总重量的无水乙醇、17.0wt%粉体总重量的丁酮、3.0wt%粉体总重量的蓖麻油、19.0wt%粉体总重量的粘结剂pvb、4.4wt%粉体总重量的邻苯二甲酸二丁脂,按照一定的工艺程序,利用球磨机进行23小时的球磨,得到物料混合均匀的初级流延浆料。然后,对初级浆料进行真空除泡处理,制得适于流延成型用的流延浆料。

  32.排胶:将堆垛好的素坯片置于排胶炉中,在600℃的温度下,大气气氛中进行排胶除碳处理。

  33.高温烧结:将排胶后的堆垛坯片置于气压炉中,n2气气氛保护、10mpa压力下,按一定升温程序,进行1780℃、保温6小时的烧结,获得氮化硅陶瓷基板。其xrd分析如图1所示,根据结果得出为纯β-si3n4相的陶瓷,性能测试结果为热导率83w/m

  34.实施例二一种电路用氮化硅陶瓷基片,采用燃烧法合成的氮化硅粉体为主原料,具体的各原料为:陶瓷原料包括燃烧法(自蔓延法)制备的α-si3n4粉体、y2o3粉体、mgo粉体和mgsin2粉体,物料混合及成型有机助剂包括溶剂丁酮和无水乙醇、粘结剂pvb、分散剂蓖麻油和增塑剂邻苯二甲酸二丁脂(dbp)、聚乙二醇(peg)。

  35.si3n4陶瓷组成配方:si3n4、y2o3、mgo和mgsin2的重量百分比分别为91.5%、5.0%、1.0%、2.5%。

  36.流延浆料配制:按上述si3n4陶瓷的组成配方,将si3n4、y2o3、mgo和mgsin2粉体与16.0wt%粉体总重量的无水乙醇、18.0wt%粉体总重量的丁酮、3.1wt%粉体总重量的蓖麻油、21.0wt%粉体总重量的粘结剂pvb、4.7wt%粉体总重量的邻苯二甲酸二丁脂,按照一定的工艺程序,利用球磨机进行20小时的球磨,得到物料混合均匀的初级流延浆料。然后,对初级浆料进行真空除泡处理,制得适于流延成型用的流延浆料。

  40.排胶:将堆垛好的素坯片置于排胶炉中,在620℃的温度下,大气气氛中进行排胶除碳处理。

  41.高温烧结:将排胶后的堆垛坯片置于气压炉中,n2气气氛保护、7mpa压力下,按一定升温程序,进行1800℃、保温7小时的烧结,获得氮化硅陶瓷基板。其xrd分析如图2所示,根据结果得出为纯β-si3n4相的陶瓷,性能测试结果为热导率92w/m

  42.实施例三一种电路用氮化硅陶瓷基片,采用燃烧法合成的氮化硅粉体为主原料,具体的各原料为:陶瓷原料包括燃烧法(自蔓延法)制备的α-si3n4粉体、y2o3粉体、mgo粉体和mgsin2粉体,物料混合及成型有机助剂包括溶剂丁酮和无水乙醇、粘结剂pvb、分散剂蓖麻油和增塑剂邻苯二甲酸丁卞脂(dbp)、聚乙二醇(peg)。

  43.si3n4陶瓷组成配方:si3n4、y2o3、mgo和mgsin2的重量百分比分别为90.0%、5.2%、1.0%、3.8%。

  44.流延浆料配制:按上述si3n4陶瓷的组成配方,将si3n4、y2o3、mgo和mgsin2粉体与16.0wt%粉体总重量的无水乙醇、18.0wt%粉体总重量的丁酮、3.0wt%粉体总重量的蓖麻油、19.0wt%粉体总重量的粘结剂pvb、4.4wt%粉体总重量的邻苯二甲酸丁卞脂,按照一定的工艺程序,利用球磨机进行20小时的球磨,得到物料混合均匀的初级流延浆料。然后,对初级浆料进行真空除泡处理,制得适于流延成型用的流延浆料。

  48.排胶:将堆垛好的素坯片置于排胶炉中,在620℃的温度下,大气气氛中进行排胶除碳处理。

  49.高温烧结:将排胶后的堆垛坯片置于气压炉中,n2气气氛保护、4mpa压力下,按一定升温程序,进行1820℃、保温8小时的烧结,获得氮化硅陶瓷基板。其断口的sem分析如图3所示,可以观察到柱状晶β-si3n4相紧密排列,断口呈穿晶断裂,性能测试结果为热导率117w/m

  50.实施例四一种电路用氮化硅陶瓷基片,以si粉直接氮化法合成的氮化硅粉体为主原料,各原料为:陶瓷原料包括si粉直接氮化法制备的α-si3n4粉体、y2o3粉体和mgsin2粉体,物料混合及成型有机助剂包括溶剂丁酮和无水乙醇、粘结剂pvb、分散剂蓖麻油和增塑剂邻苯二甲酸二丁脂(dbp)、聚乙二醇(peg)。

  51.si3n4陶瓷组成配方:si3n4、y2o3和mgsin2的重量百分比分别为92.0%、4.5%、3.5%。

  52.流延浆料配制:按上述si3n4陶瓷的组成配方,将si3n4、y2o3和mgsin2粉体与15.0wt%粉体总重量的无水乙醇、17.0wt%粉体总重量的丁酮、3.5wt%粉体总重量的蓖麻油、17.0wt%粉体总重量的粘结剂pvb、4.2wt%粉体总重量的邻苯二甲酸二丁脂,按照一定的工

  艺程序,利用球磨机进行22小时的球磨,得到物料混合均匀的初级流延浆料。然后,对初级浆料进行真空除泡处理,制得适于流延成型用的流延浆料。

  56.排胶:将堆垛好的素坯片置于排胶炉中,在600℃的温度下,大气气氛中进行排胶除碳处理。

  57.高温烧结:将排胶后的堆垛坯片置于气压炉中,n2气气氛保护、6mpa压力下,按一定升温程序,在1800℃、保温8小时的条件下进行烧结,获得氮化硅陶瓷基板。

  58.其xrd分析如图4所示。根据结果得出为纯β-si3n4相的陶瓷,性能测试结果为热导率89w/m

  59.实施例五一种电路用氮化硅陶瓷基片,采用热分解法合成的氮化硅粉体为主原料,具体的,各原料为:陶瓷原料包括热分解制备的α-si3n4粉体、y2o3粉体、mgo粉体和mgsin2粉体,物料混合及成型有机助剂包括溶剂丁酮和无水乙醇、粘结剂pvb、分散剂蓖麻油和增塑剂邻苯二甲酸丁卞酯、聚乙二醇(peg)。

  60.si3n4陶瓷组成配方:si3n4、y2o3、mgo和mgsin2的重量百分比分别为93.0%、4.0%、1.0%、2.0%。

  61.流延浆料配制:按上述si3n4陶瓷的组成配方,将si3n4、y2o3、mgo和mgsin2粉体与17.0wt%粉体总重量的无水乙醇、19.0wt%粉体总重量的丁酮、3.0wt%粉体总重量的蓖麻油、20.0wt%粉体总重量的粘结剂pvb、5.3wt%粉体总重量的邻苯二甲酸丁卞酯,按照一定的工艺程序,利用球磨机进行20小时的球磨,得到物料混合均匀的初级流延浆料。然后,对初级浆料进行真空除泡处理,制得适于流延成型用的流延浆料。

  65.排胶:将堆垛好的素坯片置于排胶炉中,在600℃的温度下,大气气氛中进行排胶除碳处理。

  66.高温烧结:将排胶后的堆垛坯片置于气压炉中,n2气气氛保护、7mpa压力下,按一定升温程序,进行1810℃、保温6小时的烧结,获得氮化硅陶瓷基板。

  67.其断口的sem分析如图5所示,可以观察到多边形状晶的β-si3n4晶粒紧密排列,气孔少,断口呈穿晶断裂,性能测试结果为热导率132w/m

  68.尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

  如您需求助技术专家,请点此查看客服电线.探索新型氧化还原酶结构-功能关系,电催化反应机制 2.酶电催化导向的酶分子改造 3.纳米材料、生物功能多肽对酶-电极体系的影响4. 生物电化学传感和生物电合成体系的设计与应用。

  1.高分子材料的共混与复合 2.涉及材料功能化及结构与性能的研究; 高分子热稳定剂的研发

  1. 晶面可控氧化铝、碳基载体及催化剂等高性能、新结构催化材料研究 2. 乙烯环氧化催化剂的研究与开发 3. 低碳不饱和烯烃的选择性氧化催化剂及工业技术开发

  1. 加氢精制 2. 选择加氢 3. 加氢脱氧 4. 介孔及介微孔分子筛合成及催化应用

  • 15963662591
  • xue@wfanxcl.com
  • 山东省潍坊市坊子区北海路8616号商会大厦1424室